

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 7 5	COMPUTING		9691/33
0 3 7	Paper 3		May/June 2012 2 hours
- 0	Candidates ans	wer on the Question Paper.	
-	No additional ma	aterials are required.	
\$ *	No calculators a	llowed.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names for software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 16 printed pages.

1 A database is designed to store data about all aircraft owned by an airline and the flight schedules.

The following table <code>AircraftSchedule</code> was a first attempt at part of the database design.

2

For Examiner's Use

Table: AircraftSchedule

AircraftID	Туре	YearBought	FlightCode	Departure	Arrival
1	747	1998	2032	Delhi	Singapore
			1187	Singapore	Melbourne
			1326	Melbourne	Tokyo
			1556	Tokyo	Delhi
2	747-400	2007	1426	Bristol	Amsterdam
			1427	Amsterdam	Bristol
			5564	Bristol	Rome
			7865	Rome	Istanbul
3	747-400	2007	1090	London	New York
			1165	New York	Boston

(a) (i) Explain why the table is not in First Normal Form (1NF).

(ii) Explain your answer in terms of the data above.

[1]

(b) The design is changed to the following:

Aircraft (AircraftID, Type, YearBought)
Schedules (FlightCode, Departure, Arrival)

Using the data given in the original table:

(i) Show what data is now stored in the table Aircraft.

Table: Aircraft

AircraftID	Туре	YearBought

[1]

(ii) How many records are now stored in table Schedules?

.....[1]

(c)	(i)	Explain what is meant by a primary key.	For Examiner's
			Use
		[2]	
	(ii)	What is the primary key of table Aircraft?	
		[1]	
(d)	(i)	Explain what is meant by a foreign key.	
		[2]	
	(ii)	State what foreign key needs to be added to the Schedules table design.	
	()	[1]	
(e)	An	additional table Airport is designed as shown:	
	Aiı	rport (<u>AirportName</u> , Country, NoOfRunways)	
	Exp	plain why this table is in Third Normal Form (3NF).	
		[2]	
(f)	The	e normalisation process is designed to eliminate data inconsistency.	
(')		plain what is meant by data inconsistency.	
	-~~		
		[1]	
	•••••	[']	

- **2** A binary pattern can be used to represent a variety of different data used in a computer system.
 - (a) The pattern could represent an ASCII character code. The table shows part of the ASCII code table.

ASCII Code Table

Character	Decimal	Character	Decimal	Character	Decimal
<space></space>	32		73	R	82
А	65	J	74	S	83
В	66	K	75	Т	84
С	67	L	76	U	85
D	68	М	77	V	86
E	69	N	78	W	87
F	70	0	79	Х	88
G	71	Р	80	Y	89
H	72	Q	81	Z	90

Consider the binary pattern: 0100 1110.

- (i) What character is represented by this binary pattern?
- (ii) What is the hexadecimal for this binary pattern?
 (b) (i) A computer system needs to be able to store positive and negative integers. Two possible representations are:

 sign and magnitude
 two's complement.

Describe two advantages of using two's complement.

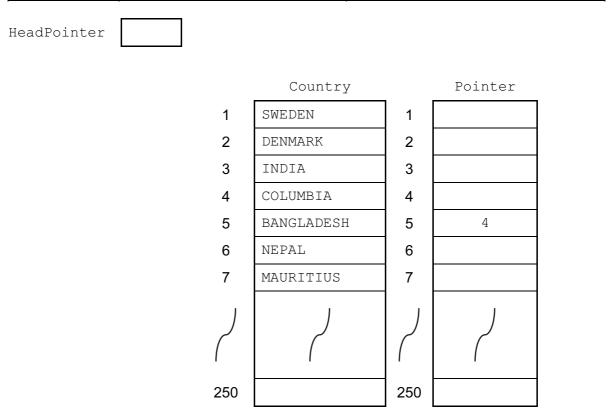
[2]

(ii) The integers -13 and +59 are to be added using two's complement addition. Show your working.

-13					
+59					+

https://xtremepape.rs/

For Examiner's Use


	4 bits	for the	e mani e expo lemeni	nent		-	man	tissa a	and	the e	expon	ent					
			e bina														
	1	0	1	0	1	0	0	0	ן ך	0	1	1		1			
			er is th						⊥ L rkin	-	_ •	1.		•			
						,	J.			0							
																[3	
	Expla	in hov	v you c	can re	coani	se that	the a	ibove	pat	tern i	s norr	malis	ed				
																	.
)	magn	the b itude) sentat	inary p whic ion.	oatterr h car	າ for tl າ be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and	[1 large poin	- -
)	magn	itude) sentat	whic	batterr h car	ו for ti ש be	he sma store	allest d us	negal ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
)	magn repre	itude) sentat	whic	batterr h car	n for tl າ be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
)	magn repres Manti	itude) sentat ssa:	whic	batterr h car	n for ti n be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
)	magn repre	itude) sentat ssa:	whic	batterr h car	n for ti ש be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
)	magn repres Manti	itude) sentat ssa:	whic	batterr h car	n for ti	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
)	magn repres Manti Expor	itude) sentat ssa:	whic	h car	n be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and	large	- -
•	magn repres Manti Expor	itude) sentat ssa:	whic ion.	h car	n be	he sma store	allest d us	negat ing a	tive	numl	ber (n	egati	ves	sign floa	and ting	large	- -
	magn repres Manti Expor	itude) sentat ssa:	whic ion.	h car	n be	he sma store	allest d us	negal ing a	tive	numl	ber (n	egati	ves	sign floa	and	large	- -

5

3 A linked list is to be implemented with the data structures described in the variable table. The countries are to be organised in alphabetical order.

For Examiner's Use

Identifier	Data Type	Description
Country	ARRAY[250] OF STRING	Stores the country names
Pointer	ARRAY[250] OF INTEGER	Array index which points to the next country in the linked list
HeadPointer	INTEGER	Array index pointing to the first country in the linked list

(a) Complete the above diagram showing all the pointer values for this linked list.

[4]

(b) The following pseudocode uses the linked list to output all country names which are alphabetically before a requested country.
 For example, the user inputs NEPAL – the pseudocode outputs all the values which are alphabetically before NEPAL.

Fill in the gaps in the pseudocode.

```
INPUT RequestedValue
ΙF
   ,....
   THEN
      //special case - the list is empty ...
      OUTPUT "Linked list is empty"
   ELSE
      .....
      Current ← HeadPointer
      REPEAT
         IF Country[Current] < RequestedValue</pre>
            THEN
               OUTPUT Country[Current]
               Current \leftarrow
            ELSE
               NoMoreValues ← TRUE
         ENDIF
      UNTIL NoMoreValues = TRUE
```

[3]

For

Examiner's Use

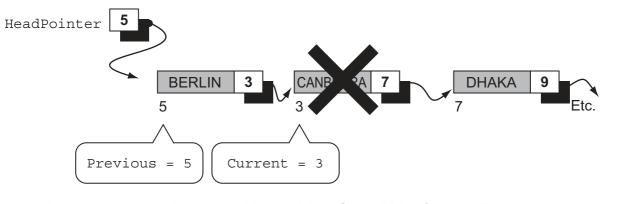
- 8
- (c) An algorithm is to be designed which inputs a requested country and outputs all the values in the linked list after this country.

For

Examiner's Use

Describe how, using the pointers, this algorithm works.

[4]


(d) A linked list is maintained for capital cities using arrays Capital and Pointer. An algorithm is required to delete a value from the linked list. The algorithm will use the following variables:

Identifier	Data Type	Description
Current	INTEGER	Array index for the current capital
Previous	INTEGER	Array index for the previous capital

9

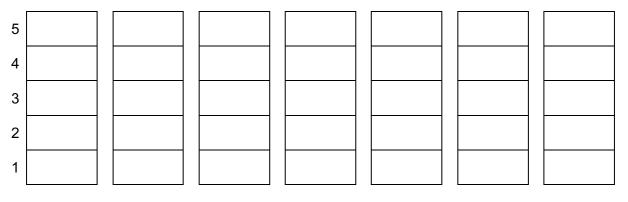
The following diagram shows the first three capitals in the linked list. We are about to delete CANBERRA.

The list has been searched from the HeadPointer position until the capital to be deleted, CANBERRA, is found.

Describe the steps in the algorithm to delete CANBERRA from the linked list. (Do not attempt to write the complete algorithm.)

[4]

Exp	oress	sions can be written in either infix or reverse Polish notation.
(a)	Eva	aluate this reverse Polish expression:
	9 (5 - 5 *
		[1]
(b)	Wri	te the following infix expressions in reverse Polish.
	(i)	(c + 5) / (b - c)
		[1]
	()	
	(11)	3 * 9 - 6 / 2
		[2]
	Dec	aribe and henefit of staring on expression in reverse Delich
(C)	De	scribe one benefit of storing an expression in reverse Polish.
		[1]
(d)	An	expression in reverse Polish can be evaluated on a computer system using a stack.
. ,		Describe the operation of a stack.
	(-)	
		F41
		[1]
	(ii)	A stack is to be implemented as an array with an integer variable to point to the 'top of stack' index position.
		State whether this is a static data structure or a dynamic data structure and explain why.
		[2]


For Examiner's Use

https://xtremepape.rs/

4

(iii) The reverse Polish expression $4\ 7\ *\ 2\ +\ 5\ /$ is to be evaluated using a stack. The first available location on the stack is 1.

Show how the contents of the stack change as this expression is evaluated.

[4]

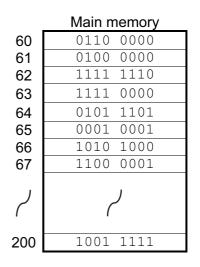
For

Examiner's Use

https://xtremepape.rs/

(a)	Define what is meant by the term computer simulation.	For Examiner's Use
	[2]	
(b)	Give two reasons why a computer system is particularly suited to carrying out a simulation.	
	1	
	2	
	[2]	
(c)	A new road has been built which crosses an existing road at right angles. A new set of traffic control lights is to be installed to control the traffic flows on the existing and new road.	
	Identify three variables which need to be controlled by the software simulation of the operation of the traffic lights.	
	1	
	2	
	3 [3]	
(d)	The values input to the simulation will affect the outputs produced.	
	Give one example for this traffic control light scenario of a change to an input which will directly affect the output.	
	Input change	
	Effect on the output	
	[2]	
	[2]	

6 The table shows the assembly language instructions for a processor which has one general purpose register – the Accumulator.


For Examiner's Use

Inst	ruction	
Op Code	Operand	Explanation
LDD	<address></address>	Load using direct addressing
STO	<address></address>	Store the contents of the Accumulator at the given address
LDI	<address></address>	Load using indirect addressing
LDX	<address></address>	Load using indexed addressing
INC		Add 1 to the contents of the Accumulator
END		End the program and return to the operating system

(a) Write on the diagram to explain the assembly language instruction shown below. Show the contents of the Accumulator after the execution of the instruction.

LDD 66

Accumulator

[2]

(b) Write on the diagram to explain the assembly language instruction shown. Show the contents of the Accumulator after the execution of the instruction.

LDI 61

Accumulator

	Main memory	
60	0110 0000	
61	0100 0000	
62	1111 1110	
63	1111 0000	
64	0101 1101	
65	0001 0001	
66	1010 1000	
67	1100 0001	
ר	רא	
200	1001 1111	
		[3]

https://xtremepape.rs/

(c) Trace this assembly language program using the given trace table. The first instruction of the program is loaded into main memory at address 200.

200	LDD	208
201	INC	
202	STO	208
203	LDD	207
204	INC	
205	STO	207
206	END	
207	16	
208	150	

	Memory	/ Address
Accumulator	207	208
	16	150

[4]

(d) Explain the relationship between assembly language instructions and machine code instructions.

•••••
[1]

https://xtremepape.rs/

For Examiner's Use

7	(a)	Explain what is meant by an interrupt.	For Examiner's
			Use
		[2]	
	(b)	An operating system uses interrupts which have priorities.	
		Describe the sequence of steps which would be carried out by the interrupt handler software when an interrupt is received and serviced.	
		[6]	
		[0]	

(c) Modern personal computer operating systems support multi-tasking. One of the modules of such an operating system will be for memory management.

Describe **two** different strategies which could be used to manage the available main memory.

	1
	2
	[6]
	[6]
(d)	Once a process finishes and memory becomes available, the scheduler will decide
	which process/job is to be loaded next.
	which process/job is to be loaded next. State three attributes of a process which are used to assess which job will be the next
	which process/job is to be loaded next. State three attributes of a process which are used to assess which job will be the next to be loaded into main memory.
	<pre>which process/job is to be loaded next. State three attributes of a process which are used to assess which job will be the next to be loaded into main memory. 1</pre>

https://xtremepape.rs/

For Examiner's

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.